

Journal of Power Sources 79 (1999) 256-261

Preparation and characterization of $LiNiO_2$ synthesized from $Ni(OH)_2$ and $LiOH \cdot H_2O$

H.X. Yang *, Q.F. Dong, X.H. Hu, X.P. Ai, S.X. Li

Department of Chemistry, Wuhan University, Wuhan, 430072, China

Received 25 January 1999; accepted 2 February 1999

Abstract

Synthesis of LiNiO₂ by heat-treatment of Li(OH) \cdot H₂O and Ni(OH)₂ is reported. The influence of synthesis conditions on the electrochemical performance of the resulting LiNiO₂ is investigated. Thermal analysis of the synthesis process shows that LiNiO₂ formation proceeds through the transformation of Ni(OH)₂ to a layered compound Ni_{1-x}(OH)_{2-x}, followed by solid reaction with LiOH. The most favorable condition is heating a mixture of Li(OH) \cdot H₂O and Ni(OH)₂ at 650°C, and then at 720°C in oxygen. The resulting LiNiO₂ exhibits a considerably high discharge capacity of 145 mA h g⁻¹ and a sufficiently long cycle-life when cycled over a lithium composition range of 0.2 $\leq x \leq 0.65$. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Lithiated nickel oxide; Cathode material; Synthesis methods; Lithium-ion cells

1. Introduction

Cathode materials presently used in lithium ion cells are mainly LiCoO_2 , LiNiO_2 and $\text{Li}_x \text{MnO}_2$, or their derivatives. Among these compounds, LiNiO_2 is a good compromise between electrochemical performance and material cost when compared with the poorer cycleability of $\text{Li}_x \text{MnO}_2$ and the higher cost of LiCoO_2 . One reason for the limited use of LiNiO_2 in commercial lithium-ion cells is probably the difficulties encountered in its synthesis on large-scale production.

In recent years, many efforts have been made to develop technical methods for LiNiO₂ preparation. An early method described in Refs. [1–3] used a mixture of NiO and LiOH to produce LiNiO₂ by a solid reaction at about 700°C in air. The resulting product has a formula very close to LiNiO₂. Later, Ohzuku et al. [4] reported a different synthesis route in which LiNO₃ and NiCO₃ (or Ni(OH)₂) were selected as precursors and heat treatment was carried out under a flow of oxygen. About the same time, Kanno et al. [5] made LiNiO₂ through a thermal reaction of Li₂O₂ and NiO in an oxygen atmosphere. Similarly, Rongier et al. [6] obtained Li_{0.98}Ni_{1.02}O₂ by heating a mixture of Li₂O and NiO at 700°C. Though a

number of studies has been undertaken to elucidate the influence of raw materials, atmosphere and heating temperature on the structural as well as electrochemical properties of LiNiO_2 , there still remains some uncertainty on the detailed chemistry of the synthesis process.

In this paper, we report the synthesis of LiNiO_2 by thermal reaction of $\text{Ni}(\text{OH})_2$ and LiOH and investigate the chemistry during the synthesis process and the electrochemistry behaviour of the LiNiO_2 .

2. Experimental

2.1. Synthesis and characterization of LiNiO₂

The synthetic procedure is also based on a solid reaction similar to those described in [1–6], the main difference is the use of spheroidal Ni(OH)₂ and LiOH \cdot H₂O as raw materials. The nickel and lithium hydroxide powders, in a molar ratio of Li:Ni = 1:1, were mixed uniformly by grinding in a ball mill and were then pressed into dense pellets. The heat treatment consisted of two steps: (i) heating the pellets at about 650°C for 8 to 10 h: (ii) raising the temperature to 700–800°C for 15 h in oxygen or air.

The thermal and chemical changes in the synthetic process were investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC). The TG and DSC

^{*} Corresponding author. Fax: + 86-27876-47617; E-mail: hxyang@public.wh.hb.cn

measurements were performed on 25 g samples of LiOH \cdot H₂O and Ni(OH)₂ at 20°C min⁻¹ under an oxygen or an air purge by means of a PRT2 type thermal analyzer (Beijing Optical Instrument Factory, China).

The crystalline features of the resulting LiNiO_2 (in powder form) were characterized by X-ray diffraction (XRD) on a RigaKu RU-200B type diffractometer with Cu K_a radiation.

The average degree of oxidation of nickel in LiNiO_2 was determined according to the method reported in [7]. The total amount of nickel in LiNiO_2 was measured by EDTA titration of a diluted hydrochloride solution of LiNiO_2 . The oxidation state of nickel was determined by dissolution and reduction of LiNiO_2 to Ni^{2+} ions in dilute H_2SO_4 solution with excess ferrous ammonium sulfate and then by back titration to determine the Fe²⁺ residue with standard potassium dichromate.

2.2. Electrochemical measurements

The cyclic voltammetry of LiNiO_2 was carried out by use of a powder microelectrode. Fabrication of the powder microelectrode has been described in [8]. Since the current passing through the microelectrode is sufficiently small, the voltammetry can be conducted with two electrodes. Silver wires covered with AgO served as the counter and the reference electrodes.

The charge–discharge behaviour of a LiNiO₂ cathode was examined in experimental cells with a sandwiched design. The LiNiO₂ cathode was prepared by rolling the electrode paste into a 0.2-mm-thick film and pressing it on to screened A1 foil. The cathode had a composition of 85% LiNiO₂, 8% carbon black, and 7% PTFE. The electrolyte was 1 M LiClO₄ PC + DME (1:1 by vol.). The separator was a Celguard 2400 microporous polylene membrane.

Changes in the crystalline structure of the cathode during charge–discharge cycling were examined by ex-situ XRD analysis. The cathodes at the required depth of charge or discharge were removed from the experimental cells, rinsed with pure DME solvent, and transferred in a desiccator to a dry-air glove box.

3. Results and discussions

3.1. Optimization of synthesis conditions

It is well known that the performance of LiNiO_2 strongly depends on the choice of starting materials, the atmosphere and the heating sequences [1–6,9–11]. In terms of industrial production, the cost of the raw materials and the preparation process would also be an important factor.

A comparison of the initial capacity of LiNiO_2 synthesized from different combinations of lithium and nickel compounds, is given in Table 1. The data show that LiNiO_2 obtained from $\text{Li}(\text{OH}) \cdot \text{H}_2\text{O}$ and $\text{Ni}(\text{OH})_2$ not

Table 1

Initial capacity of LiNiO₂ samples synthesized from different combinations of various lithium and nickel salts

Starting compounds	Initial charge–discharge capacity (mA h g^{-1})	Charge–discharge efficiency (%)
$2\text{LiOH} \cdot \text{H}_2\text{O} + \text{Ni}_2\text{O}_3$	150-103	68.67
$LiOH \cdot H_2O + Ni(OH)_2$	175–135	77.14
$LiOH \cdot H_2O + NiC_2O_4$	140-100	71.43
$Li_2CO_3 + Ni_2O_3$	120-65	54.17
$Li_2CO_3 + 2Ni(OH)_2$	165-110	66.67
$Li_2CO_3 + 2NiC_2O_4$	135-90	66.67
$2NiNO_3 + Ni_2O_3$	180-110	61.11
$NiNO_3 + Ni(OH)_2$	150-95	63.33
$NiNO_3 + NiC_2O_4$	135–90	66.67

Synthesis conditions: heat at 650°C for 9 h, then at 720°C for 15 h in oxygen.

only have the highest discharge capacity (135 mA h g⁻¹), but also have the highest charge–discharge efficiency. On the other hand, both LiOH and Ni(OH)₂ are cheap and chemically stable materials and use of the compounds does not involve the production of any harmful side-products during the synthesis process. Thus, it appears better to use LiOH and Ni(OH)₂ for industrial preparation of LiNiO₂.

The influence of heating temperature and atmosphere on the initial capacity of LiNiO₂ is shown in Table 2. Samples prepared in air at a temperature below 650°C yield little charge and discharge capacity, viz., 55 and 20 mA h g^{-1} , respectively. With increasing temperature, the discharge capacity of samples made in air increases rapidly, but the maximum value is only 85 mA h g^{-1} . By contrast, samples prepared in oxygen exhibit a remarkable improvement in charge-discharge behaviour, the discharge capacity exceeds 130 mA h g^{-1} at the 0.4 C rate. The data in Table 2 also demonstrate that the electrochemical performance of the samples is very sensitive to the upper limit of temperature assigned to LiNiO₂ formation. In either an air or an oxygen atmosphere, the favorable temperature range for crystallization of LiNiO₂ is between 700 and 800°C, most probably in the range 720 to 750°C.

The relation between the initial discharge capacity and the average oxidation state of LiNiO_2 is shown in Fig. 1. The samples with different oxidation states were obtained by adjusting the heating temperature and partial pressure of oxygen. In general, the lower the temperature and the lower the oxygen partial pressure used below 700°C, the lower was the average-degree of oxidation of the nickel. On the other hand, the higher the temperature and the longer the heating time, the higher the degree of oxidation of nickel above 800°C. The degree of oxidation which exhibited the highest discharge capacity was close to 2.95, and was obtained at 720°C in oxygen,

3.2. Thermochemistry of synthesis

In order to gain a detailed understanding of the crystalline transformation during the various synthesis condi-

Table 2 Initial capacity of LiNiO₂ obtained from LiOH and Ni(OH)₂

Atmosphere	Heating sequence	Initial charge–discharge capacity (mA h g ⁻¹)	Charge-discharge efficiency (%)
Air	600°C, 9 h 720°C, 15 h	152-85	55.92
Air	650°C, 24 h	55-20	36.36
Air	650°C, 12 h 700°C, 12 h	130–55	42.30
0 ₂	600°C, 8 h 700°C, 16 h	170-125	73.53
O ₂	600°C, 9 h 720°C, 16 h	170–135	79.41
O ₂	600°C, 9 h 800°C, 16 h	152–105	69.08

tions, TG and DSC analyses were performed on the mixture of $LiOH \cdot H_2O$ and $Ni(OH)_2$ in air and in oxygen. The TG and DSC plots are shown in Figs. 2 and 3, respectively. The first weight loss at 50 to 150°C is as high as 13.1% for the mixture in air and in oxygen. By contrast, a large endothermic peak is present in the temperature range of the DSC curve. Since this temperature cannot cause any changes in the chemical structure of $LiOH \cdot H_2O$ and $Ni(OH)_2$, but can only cause the loss of lattice water, it is reasonable to attribute the weight loss to the dehydration of LiOH \cdot H₂O. This assignment is further confirmed by the agreement of the calculated weight loss according to the reaction $\text{LiOH} \cdot \text{H}_2\text{O} + \text{Ni(OH)}_2 \rightarrow \text{LiOH} +$ $Ni(OH)_2$, with the experimental value (13.1%). As the temperature is increased to 210°C, a second endothermic peak appears in the DSC plot and a weight loss of 10% is observed in the region of 210 to 300°C. It is recognized that in strongly oxidative alkaline media the hexagonal crystal Ni(OH)₂ is easily oxidized to the layered compound NiO_x(OH)_{2-x} (0 < x < 1), which is stabilized and exists as $NiO_{2/3}(OH)_{2-2/3}$ [11]. This can be written as $Ni_3O_4 \cdot 2H_2O$. At this stage, diffusion and reaction of LiOH and Ni₃O₄ \cdot 2H₂O is accelerated due to the increased temperature. This leads to the formation of LiOH ·

Fig. 2. TG curves for a mixture of $LiOH \cdot H_2O$ and $Ni(OH)_2$ in oxygen and in air. Scan rate: 20°C min⁻¹.

 $NiO_{4/3}$ and is accompanied by rearrangement and dehydration of the crystal lattice. For such a reaction sequence, the expected weight loss is 9.4%, which is very close to the observed weight loss of 10%.

When temperature rises above than 300°C, the TG curve displays a very slow and gradual loss of weight; this extends to 600°C in both air and oxygen. By contract, the DSC curve exhibits an overlapping endothermic band between 450 and 500°C in both air and oxygen. This DSC feature can be explained by the fact that in this temperature region LiOH \cdot NiO_{4/3} undergoes transformation to LiNiO₂ in two steps. First, LiOH \cdot NiO_{4/3} is converted to LiNi_{4/3}O_{4/3}(OH) at about 410°C, and this compound then becomes LiNiO₂ at 450°C with release of hydrogen and oxygen. Based on this analysis, the calculated weight loss is 5.2% and the observed weight loss was about 4.8%. This agreement supports the foregoing interpretation.

An obvious difference in both DSC and TG data appears at higher temperatures in both air and oxygen. At above 500°C, the DSC and TG data measured in oxygen display a flat straight line which indicates that neither thermochemical reaction nor weight loss is taking place. The DSC and TG data obtained in air, however, are inclined lines, which represent a continuous weight loss

Fig. 1. Initial discharge capacity vs. the average oxidation degree of Ni for LiNiO_2 .

Fig. 3. DSC curves for a mixture of $\text{LiOH} \cdot \text{H}_2\text{O}$ and $\text{Ni}(\text{OH})_2$. Scan rate: 20°C min⁻¹.

Table 3 Analysis of DSC and TG data

Suggested reaction	Calculated weight loss (%)	Measured weight loss (%)	DSC peak position (°C)
$\overline{\text{LiOH} \cdot \text{H}_2 \text{O} + \text{Ni}(\text{OH})_2}$			
\rightarrow LiOH + Ni(OH) ₂	-13.4	-13.1	115
\rightarrow LiOH + NiO _{2/3} (OH) _{2-2/3}	-0.5		
$(Ni_3O_4 \cdot 2H_2O)$		-10	290
\rightarrow LiOH · NiO _{4/3}	-8.9		
\rightarrow LiNiO _{4/3} (OH)	-5.2	-4.8	410
$\rightarrow \text{LiNiO}_2$			450
In total	-28	-27.9	

and an endothermic reaction process. These phenomena imply that LiNiO_2 is not a thermally stable compound but tends to release oxygen, especially at temperatures above 500°C. Hence, in order to keep the composition and structure of the resulting LiNiO_2 stable, the use of an oxygen atmosphere for heat treatment is very crucial in the synthesis. A summary of the experimental data and derived reaction mechanism for LiNiO_2 preparation is presented in Table 3.

3.3. Electrochemical performance

The lithium intercalation properties and charge–discharge performance of LiNiO₂ material prepared in various ways have been described in either studies [3,12,13]. The present work focuses on the electrochemical performance of the LiNiO₂ synthesized from LiOH \cdot H₂O and Ni(OH)₂.

The differential curve of dQ/dV vs. V and the cyclic voltammogram of LiNiO₂ are given in Figs. 4 and 5, respectively. Both curves show three pairs of oxidation-reduction peaks which are associated with the three steps of the phase formation in lithium intercalation. These results are in accordance with previous work.

Fig. 4. Differential curve of dQ/dV vs. V from first charge–discharge curve of LiNiO₂ at constant current of 5 mA g⁻¹.

Fig. 5. Cyclic voltammograms for $\rm LiNiO_2$ powder microelectrode. Scan rate: 2 mV $\rm s^{-1}.$

The discharge curves of a LiNiO₂ cathode in 1 M LiClO₄/PC + DME(1:1) are given in Fig. 6. For a low current of 5 mA g⁻¹, the cathode exhibits a discharge capacity of 145 mA h g⁻¹, 90% of which is delivered at > 3.5 V. When the current is increased to 25 mA g⁻¹, the voltage plateau is lowered by about 250 mV. This suggests that the high-rate capability of LiNiO₂ is inferior to that of LiCoO₂ or LiMn₂O₄.

The cycleability of LiNiO₂ is very sensitive to the depth-of-charge. For example, it can be seen in Fig. 7 that when LiNiO₂ is cycled to a deeper charging state corresponding to x = 0.7 in $\text{Li}_{1-x}\text{NiO}_2$, the charge-discharge curve exhibits severe polarization though only a few cycles was conducted. By comparison, at $x \le 0.65$ the chargedischarge behaviour of Li_{1-x}NiO₂ remains almost unchanged and demonstrates the considerable reversibility for lithium insertion and extraction. This feature can also be seen in cyclic voltammograms for $LiNiO_2$ (Fig. 8). When the potential scan is limited to 0.2-1.1 V, the area and the shape of the oxidation-reduction peaks remain steady without much change with cycling. When the potential scan is extended to 1.2 V, however, the peak current rapidly decreases and the peak positions are shifted considerably and this indicates increasing polarization with cycling.

Fig. 6. Discharge curves of LiNiO₂ at constant current of (a) 5, (b) 15, (c) 25 mA g^{-1} .

Fig. 7. Charge–discharge of x in $\text{Li}_{1-x}\text{NiO}_2$ cathode cycled at lithium composition range of (a) $0.2 \le x \le 0.65$ and (b) $0.2 \le x \le 0.70$.

In order to detect changes in the crystalline structure of $\text{Li}_{1-x}\text{NiO}_2$ with different lithium composition, XRD measurements were performed on LiNiO_2 cathodes cycled to different extents.

The XRD patterns of a series of $\text{Li}_{1-x}\text{NiO}_2$ cathodes with the same composition obtained by charge or discharge are presented in Fig. 9. The samples labeled 'a' represent the oxidation state $\text{Li}_{1-x}\text{NiO}_2$ obtained by directly charging LiNiO₂ to the required lithium composition. The samples labeled 'b' are obtained by first charging LiNiO₂ to $\text{Li}_{1-0.65}\text{NiO}_2$ and then discharging $\text{Li}_{1-0.65}\text{NiO}_2$ to the stated composition. It is obvious that in the region of $0.2 \le x \le 0.65$, $\text{Li}_{1-x}\text{NiO}_2$ cathodes with the same lithium composition have the same XRD features, despite being in the charge or discharge state. Nevertheless, when the samples are overcharged to $x \ge 0.7$, significant changes take place in the XRD spectrum of $\text{Li}_{1-x}\text{NiO}_2$. This indicates crystalline distortion or lattice transformation. In

Fig. 8. Cyclic voltammograms for powder microelectrode of $LiNiO_2$ scanned over potential region of (a) 0.2–1.1 V with scan rate 2 mV s⁻¹ and (b) 0.2–1.2 mV with scan rate 5 mV s⁻¹.

Fig. 9. XRD diffractograms for $\text{Li}_{1-x}\text{NiO}_2$ cathode at various chargedischarge depths: (a) charged state and (b) discharged state.

our experience, as long as a $\text{Li}_{1-x}\text{NiO}_2$ cathode is cycled in the composition range $0.2 \le x \le 0.65$, which corresponds to a voltage range of 3.0 to 4.1 V, a prolonged cycle life can be reached with a high discharge capacity. Under this condition, the cycling behaviour of a $\text{Li}_{1-x}\text{NiO}_2$ -graphite lithium-ion battery is shown in Fig. 10. Even at constant-current charging–discharging at the 0.4 C rate, the cell provides several hundred cycles with very good rechargeability.

Fig. 10. Discharge curves of LiNiO_2 /graphite lithium-ion battery of AA size; charge-discharge current 200 mA (0.4 C).

4. Conclusions

The synthesis of LiNiO₂ from Li(OH) · H₂O and Ni(OH)₂ is described and the influence of the synthesis conditions on the electrochemical performance of LiNiO₂ is discussed. TG and DSC analyses show that the formation of LiNiO₂ proceeds through the transformation of Ni(OH)₂ to the layered compound Ni_{1-x}(OH)_{2-x} followed by a solid reaction with LiOH. The optimum synthesis conditions for LiNiO₂ preparation is heating the mixture of Li(OH)₂ and Ni(OH)₂ at 650°C for 9 h and then at 720°C for 15 h in an oxygen atmosphere. In general, the resulting LiNiO₂ has a high capacity of 175 mA h g⁻¹ on the first charge and 145 mA h g⁻¹ on the first discharge, and sufficient cycle life when cycled over the $0.2 \le x \le 0.65$ composition range.

Acknowledgements

This work was supported by the National High Technology Development Project of China.

References

- [1] Lecerf, M. Broussely, J.P. Gabano, Eur. Patent No. 0 345 707.
- [2] Lecerf, M. Broussely, J.P. Gabano, US Patent No. 4 980 080, Dec. 12, 1989.
- [3] M. Broussely, F. Perton, J. Labat, R.J. Staniewicz, A. Romero, J. Power Sources 43/44 (1993) 209.
- [4] T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140 (1993) 1862.
- [5] R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda, M. Takano, J. Solid State Chem. 110 (1994) 216.
- [6] A. Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc. 143 (1996) 1168.
- [7] S. Yamada, M. Fujiwara, M. Kanda, The Seventh International Meeting on Lithium Batteries, Boston, USA, Ext. Abstr. and Program, p. 423.
- [8] S. Cha, C.M. Li, H.X. Yang, P.F. Liu, J. Electroanal. Chem. 368 (1994) 47.
- [9] J.R. Dahn, U. von Sacken, M.W. Juzkow, H.Al. Janaby, J. Electrochem. Soc. 138 (1991) 2207.
- [10] G. Dutta, A. Manthiram, J.B. Goodenough, J. Solid State Chem. 96 (1992) 123.
- [11] R.S. McEwen, J. Phys. Chem. 75 (1971) 1782.
- [12] M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, J.P. Pérès, J. Power Sources 54 (1995) 109.
- [13] C. Delmas, I. Saadoune, A. Rougier, J. Power Sources 43/44 (1993) 595.